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THE BOURBAKI CHOICE 

J. Dieudonne 

The Bourbaki group has not only undertaken to write a comprehensive treatise 
on a large part of mathematics but has also organised, ever since 1948, what is 
called the Bourbaki seminar - not to be confused with the Bourbaki book nor 
with the way the book is written by members of Bourbaki in seclusion and in 
secluded meetings where nobody else can participate except by very special favour. 
But the Bourbaki seminar is open to everybody and is usually attended by a large 
proportion of French and neighbouring mathematicians. It meets three times a year. 
At each session there are normally six talks on various parts of mathematics, the 
topics I will discuss with you later. And so these talks are quite detailed expositions 
on recent work in some part of mathematics. Each talk may take up 10-20 pages. 
So it is really an important exposition on some part of mathematics. 

These talks are mimeographed. And now they have been published and are 
made available to the public by Benjamin, in number 346 I think, and since then by 
the Springer Lecture Notes. So every year Springer Lecture Notes publishes a book 
which is devoted to the Bourbaki talks given the year before. We now have approxi
mately No. 530. So there are a little over five hundred talks which have been pub
lished and are available. In a sense I think they constitute a real encyclopedia on 
Mathematics or at least part of mathematics- the part which I am going to describe. 
The only trouble with these publications is that the order of the talks is completely 
random. It depends on what has happened the previous year. So the Bourbaki group 
will decide on two talks on number theory, maybe one on topology, one on partial 
differential equations, and so on. The order is completely arbitrary. If you want to 
pick up something about a particular subject among the 530 talks, you will be com
pletely lost. It is almost impossible. So I was approached by a publisher two years 
ago to write something on Bourbaki. But I wondered what I should do until I 
thought that it should perhaps be a good thing for people who want to take advan
tage of the existence of this enormous body of mathematical literature, to write a 
kind of guide through the Bourbaki talks. So what I tried to do is to arrange them 
according to subjects, give a rapid exposition on what has been going on in that 
subject that is particularly interesting to the Bourbaki group, and to point out the 
numbers of the talks where the various parts of the subject may be found. And that 
is the book which has been published last year and which I called Panorama des 
Mathematiques Pures - a bird's eye view of pure mathematics, and the subtitle is 
The Bourbaki choice. Of course, I do not pretend that this book contains a descrip
tion of all parts of Mathematics - only those which have been the subject of the 
Bourbaki talks. So it is quite necessary first to explain what is the Bourbaki choice. 
I think this is a purely personal point of view. 

The evolution of mathematics can be described in terms borrowed from the 
astrophysicists when they talk about the way stars are born. If I am right (I only 
know this through popular exposition), what I get from the astrophysicist is roughly 
this. There are lumps of diffuse matter in space. Under the influence of gravitation 
they tend to contract, and they contract more and more until they reach a point 
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where the pressure and temperature is high enough for the nuclear reactions to start. 
Then a star is born, and it has now reached a point on the main sequence. And there 
it will stay for varous lengths of time, sometimes billions of years, until it has 
exhausted its regular nuclear fuel. Then really bad things may happen about which 
I will not enter into, and the star goes to various stages about which I will not 
mention. 

Now this is just a comparison which I think is quite apt for the way mathe
matics develops. Usually what happens is this. There are a number of problems, 
isolated problems, which are studied by various mathematicians at various times, and 
usually there is not much connection between these problems. The methods which 
are used are mostly ad hoc methods. When you have solved one problem there is 
no reason why you should be able to solve another. But then sometimes, after this 
period, there appears, due to some bright mathematician, an idea that there might 
be a method which would cover many of these problems at the same time. And so 
these begin to coalesce into a kind of organic body of mathematics. If things are 
favourable, there will even be a theory which is born and which underlies a whole 
group of mathematical results and problems and enables them to be solved. Further
more these theories sometimes turn out to be able to solve problems which apparently 
have no connection with the initial ones. This is the point corresponding to the stars 
where we have the birth of a theory of a mathematical method. What happens after 
that? Well, the theory or method stays for a long time in what I will call, borrowing 
again from the astrophsicists, the mainstream of mathematics. For how long? Maybe 
very long - usually until it has run short of big problems. Because what happens in 
mathematics is, as Hilbert emphasised strongly, the life of mathematics are problems. 
You must have problems to solve. As long as there remains a large number of pro
blems to solve, the theory remains alive and stays in the mainstream. And the 
mainstream is precisely characterised by the fact that all these theories have fantastic 
inter-connections with one another. They are not isolated. 

What happens when a theory has run short of big problem? Well, it has the 
tendency to lose contact with the rest of mathematics and that may be done in 
different ways: either by specialising too much too particular questions which have 
no relation anymore with the rest of mathematics, or by diverging too much into 
unmotivated axiomatic extension. Let me give you an example to illustrate what I 
have just said. A typical example of pre-mainstream mathematics. The innumerable 
problems of number theory are obviously of the type in combinatorics. When you 
have solved a problem in number theory or combinatorics, usually you are not able 
to solve any other one. Look at Diophantus. Or more recently, the work of Paul 
Erdos, who is a master at that kind of thing and probably the most clever mathe
matician alive. He has been able to solve a fantastic number of problems which have 
no connection whatsoever with one another. So that is an example of pre-mainstream 
mathematics which is still pre-mainstream. What about those that leave the main
stream? Well, some of them leave the mainstream because of their concentration 
on too special problems. You may quote, for example, elementary geometry, 
analytic functions, invariant theory in the 19th century. The two last examples are 
rather remarkable because they show that a theory may leave the mainstream and 
then return again afterwards. This, I think, cannot be done by stars. Elliptic func
tions have again become very important nowadays and the same thing is true for 
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invariant theory. For a long time they were completely cut off from the rest of 
mathematics. In our time, theory of analytic functions of one complex variable is 
typical of having specialised in very special problems which have no connection with 
the rest of mathematics. There are other examples such as non-communative or 
non-associative algebra, general topology, abstract functional analysis. All these 
exemplify the way a theory may drift off the mainstream. 

So now after I have circumscribed the kind of mathematics which I call the 
mainstream of mathematics, I can say what the Bourbaki choice is. The Bourbaki 
choice is the mainstream of mathematics. Practically all the other theories have 
never or extremely seldom been considered in the Bourbaki talks. It is not part of 
my doing. Actually, if I may speak personally, I practically never took any part 
in the choice of the talks in the Bourbaki seminar. I think I gave one in 20 years 
when I was a member of Bourbaki and, of course, I have retired a long time ago. 
I think I gave one or two hints once on the choice of a particular talk. The thing 
was not done by me at all. I am perfectly free to speak of it. 

Let me give you an exact list of the topics which are considered in my book. 
I have in my book twenty chapters in twenty parts. In each chapter I gave a kind of 
diagram in which I mentioned the connections between the theory and the other 
parts of the book. So you have a central topic and all the other topics which are 
connected with it. Then there is a description of the main problems of the theory, 
how they have been considered, what are the Bourbaki talks corresponding to it 
and a supplementary bibliography for those who are interested, and finally at the 
end of the chapter, I gave two things - one is a list of questions in the application 
of mathematics which are related to the theory which I have just mentioned and the 
other is a list of the most prominent mathematicians who have worked in that field. 
This is the organisation of the book. 

I am not going to give you the 20 different chapters but I will condense them 
into 10 topics or so which I will now list: 

1. Logic and foundations; 
2. Algebraic and differential topology; 
3. Differential manifolds and differential geometry; 
4. Ordinary differential equations; 
5. General theory of partial differential equations and foliations; 
6. Linear partial differential equations; 
7. Banach spaces, spectral theory, Banach algebra; 
8. Commutative harmonic analysis, ergodic theory, probability, potential theory; 
9. Lie groups, non-comutative harmonic analysis, automorphic forms; 

10. Abstract groups; 
11. Analytic geometry. 

Now of course, you must understand it is analytic geometry as it is used now; 
that is, the definition of Serre, Analytic geometry is the theory of analytic manifolds 
and analytic spaces. That is what was previously called the theory of analytic func
tions of several complex variables. Now it has become so geometric that it deserves 
to be called analytic ·geometry. The old analytic geometry, of course, does not exist 
- it is a bad way of doing Lie algebra. Algebraic geometry and commutative algebra 
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cannot be separated anymore. Commutative algebra is part of algebraic geometry 
and algebraic geometry can only be done by commutative algebra. And so they 
are organic wholes. And last but not least, number theory. 

Of course, in the Bourbaki seminar, not all theories have the same density. By 
density I mean the number of talks compared to, say the number of papers pub
lished in a year. Some of them have very high density, such as number theory, 
algebraic geometry; some of them rather low- logic and foundations, probability or 
potential theory. In my book, I have classified them according to four layers, the 
last layer being essentially empty because it is the part of mathematics for which 
there have been no Bourbaki talks and which consists of set theory, general algebra, 
general topology, classical analysis, topological vector spaces, integration theory. No 
Bourbaki talks have ever been given on this subject. Of course, it is impossible during 
the time given to me to take each of these parts and describe in detail what is hap
pening in them. So I have to make a choice of two or three topics and try to tell 
you what is the situation in these parts of mathematics. There are so many tech
niques in Lie groups and non-commutative algebra for example and also in algebraic 
geometry and differential topology that it is almost impossible to talk about them 
except by giving a four-year course. So I will now confine myself to things where it 
is possible to be understood without too much technical terms. Logic and founda
tions is perhaps the easiest one. 

So what has happened to logic in the twentieth century? Well, you very well 
know that there was a time at the beginning of the century and the end of the nine
teenth century (1895 to 1930), where there was a great movement in logic and set 
theory because most of the mathematicians were led to believe that it had been 
found that the foundations of mathematics did not rest on a very secure basis, and 
so a lot of mathematicians were worried by what was happening. So they took a 
great interest, in fact, a passionate interest, in these questions even though they were 
not professional logicians nor do they work in set theory. It was a very remarkable 
period, quite interesting, quite lively and exciting, but the situation nowadays is 
completely different. I am not aware that any of the brightest young mathema
ticians of our time has ever expressed any interest in the problems of the foundations 
of mathematics unless they specialised in the field. Of course, a man like Paul 
Cohen was certainly interested in the question. He has certainly worked in that 
field - in the continum hypothesis. Why is that? It is strange that there should be 
a difference between the opinion of mathematicians in the beginning of this century 
and what they are · thinking now. I think this is due to the fact that we have had 
fortunately in the beginning of this century an axiomatic system formulated clearly 
by Zermelo, Fraenkel and Skolem, which have been later on organised into a whole 
within a logical system, and it has served practically all mathematicians with the 
exception of a small group of intuitionists and constructivists. It is a perfectly satis
factory foundation for our work to such an extent that practically nobody men
tions it anymore. If you take a paper on mathematics you will never see in the 
beginning or introduction that "I am following the Zermelo-Fraenkel svstem." 
No mathematician says that anymore; it is simply taken for granted. In other 
words, he has reverted to the naive set theory of pre-Cantor set theory, where 
mathematicians rested on a common ground of common concensus on the mami
pulations of mathematical objects, and it is the same thing now. I do not believe that 
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pure mathematicians have any fear about contradictions in that system in which 
they have been working for almost a century without any trouble. Furthermore, I 
say that the famous paradoxes of set theory have been invented, not by professional 
mathematicians, but by philosophers - turned-mathematicians, because they were 
used in the kind of arguments which no mathematician in his good sense will ever 
have used. So no wonder they got all sorts of fantastic and extraordinary remarks. 
But it was very easy to use the ZF system to put things in order and so ever since 
mathematicians have never to bother about that kind of thing. 

This contrasts, in a sense, with what people in mathematical logic are doing. 
Mathematical logic is more active than it ever was. The number of papers is in
creasing all the time. What are they doing? On the one hand, they are exploring 
other logical systems such as second-order logic, model logic, many - valued logic. 
The trouble is that it may be very interesting for them but no mathematician as far 
as I know has ever found any use for these systems at all. So one would be tempted 
to say that logic and foundations is off the mainstream. However, this is not true 
because it has scored a number of spectacular successes which have kept it in close 
contact with the rest of mathematics. I am referring, of course, to the two famous 
problems of Hilbert concerned with logic, the No.2 and No. 10, and their solutions 
in our time. The No. 2 is the question of independence of the axiom of choice and 
of the continuum hypothesis. As you know it has been proved that these proposi
tions are undecidable within the ZF system. Furthermore, the proof by Cohen 
which clinched the final result rested on a new method which he called "forcing" 
and which has been applied by others to establish the undecidability of a lot of 
other open problems in set theory. So we are faced with the unforeseen situation 
that we may have to choose beyond the ZF system not including the axiom of 
choice, an infinity of different systems of ax ions for set theory, without fear of 
running into contradiction anymore than within the ZF system itself. This disturbs 
some mathematicians, and nobody can guess what will happen in the future. It 
may very well be, as some people beleive, that some day there will be a consensus 
among mathematicians as to which kind of axioms should be added to the ZF 
system to get a good kind of mathematics. Or it may well be that this will never 
happen and that we will have, as we have now, an infinity of possible systems above 
the ZF system. I should say that this does not very much disturb people interested 
in the Bourbaki choice because it turns out that almost never is the axiom of choice 
nor the continuum hypothesis used in any of their theorems. Very, very seldom does 
one uses the generalised axiom of choice. What you use is the enumerable axiom 
of choice. This is essential for analysis. Beyond that, in most questions, you can 
dispense with the other one. And still more so for the continuum hypothesis. 

The other Hilbert problem is whether there exists an algorithm which would 
decide in a finite number of steps whether a system of diophantine equations has 
or has no solutions. I wonder whether Hilbert expected a positive answer because it 
seems so strange to have this idea. Most mathematicians after Hilbert would pro
bably expect the answer to be no. And actually this is what happened. In 1970 
Matyasevich, a young Soviet mathematician, proved that there was no possibility 
of doing what Hilbert was contemplating, resting on very fundamental work previous
ly done by Julia Robinson, Davis and Putnam. So this again is something in which 
logicians have taught us very valuable results in our conception of mathematics. 
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And finally, there is the influence which is starting right now through the use of 
ultra-products and non-standard analysis by logicians in introducing new ideas in 
mathematics. Actually one could give the definition of these things without ever 
mentioning logic at all. They are bona fide in mathematics. But I think it will be 
misleading. Because they definitely come from logic, they should be kept in contact 
with logic. Eventually they may rise to very powerful methods, new methods of 
solution for problems which are inaccessible now. Only the future will tell. So this 
is what one may say about the status of logic and foundations of mathematics 
today. It must be said in conclusion that their result are really marginal here -
very interesting but completely marginal. Although many beautiful results proved 
by logicians are quite interesting to the non-mathematicians of these days, I would 
say even if mathematical logic has completely ceased to exist in 1925, no mathema
tician would ever missed it. 

Let me try to say something about Topic No. 3: differential manifolds and 
differential geometry. Here the fundamental fact about differential manifolds is 
that the cohomology of such a manifold can be described in terms of differential 
forms. This is the famous de Rham's theorem which has been more or less predicted 
by Poincare and Elie Cartan. Very recently, Sullivan, an American mathematician, 
has remarked that one can extract much more information from the differential 
behaviour of differential forms using, of course, much more refined algebraic and 
topological tools, culminating in what is perhaps one of the oldest dreams of people 
working in differential topology, classifying compact differential manifolds. Actually 
Sullivan can give for a given differential manifold a system of rather complicated 
algebraic invariants such that for the given invariants only a finite number of diffeo
morphism classes of manifolds have these invariants. A rather remarkable result. Of 
course, the other old problem of differential topology was yielded to powerful 
topological tools. For instance, John Frank Adams was able to solve a long-standing 
problem: how many independent vector fields are there on a sphere? A beautiful 
result. A little earlier, for instance, Borel and Serre proved that S2 and S6 are the 
only two spheres which can have almost a complete complex structure. 

There has been a lot of progress made in what is called the theory of singulari
ties. If you have two differential manifolds and a mapping u from M into N say, take 
a C

00 
mapping. A very old problem, which certainly goes back to the founders of 

differential calculus, is how to classify these mappings. When are two such mappings 
similar in some ways? And what has happened in the nineteenth century is that 
people have tried and very soon they found that the number of possibilities increase 
in complexity with the dimension of the manifold. So the question was practically 
abandoned for a long time. What has revived the theory and brought a remarkable 
new progress is the concept of genericity. It is a very beautiful idea. When you have 
to classify something in a class of objects which turns out to be so completely 
complicated that the whole thing seems hopeless, the idea is to single out among 
these objects some of them which you will call "good" and the others called "bad" 
in such a way that for the good objects, there is a very reasonable classification 
which can be handled. What about the bad? Well, you must have two things. First of 
all, a good classification for the good objects, a meaningful classification I would 
say, and then a fundamental fact that the bad ones are not too numerous. In other 
words, you must have the good objects forming a very large class and the bad ones 
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left in the lurch in the small parts. And that is what people have done, essentially 
by two mathematicians, Whitney and Thorn. They have been able to provide a way 
of classifying mappings in such a way that they can say what is a generic mapping. 
A generic mapping is a good one. Essentially, a generic mapping is something which, 
when you vary everything, does not change its nature. But I cannot give any more 
details. And then after Whitney and Thorn, other mathematicians have taken the 
subject and made remarkable progress, notably the American mathematician, 
Mather. This is one of the big areas where there is great progress: the theory of 
differential manifolds. 

Now differential geometry is something slightly different. It is something 
where you put on a differential manifold additional structure. The most important, 
of course is the Riemannian structure. When you put a Riemannian structure on a 
manifold, you get a Riemannian space. In this direction, there are many important 
properties which link together the properties of the Riemannian structure and the 
topological properties on the manifold. For instance, if a compact, connected 
Riemannian manifold is such that the sectional curvature at every point is bigger 
than % then the manifold is homeomorphic to a sphere. A very remarkable result. 
There are plenty of things like that; for example, geodesics. Great progress has been 
made. 

Finally, I would like to mention a third subject which is easy to understand: 
Abstract groups (No. 10). There is a rather curious situation here. On one hand, 
good progress has been made using only old tools which were available in the early 
1900 to people like Frobenius, Schur and Burnside, namely combinatorial argu
ments, the theory of characters, the Sylow subgroups. Fro instance, the Russian 
mathematician, Novikov, has finally succeeded by a long combinatorial argument 
to solve the Burnside problem. If a group has a finite number of generators satisfying 
the condition that for a given n, all elements of the group have order at most n, is 
the group finite? The answer found by Novikov is that when n ~ 697, there are such 
groups which are infinite. 

But much of the recent advances in group theory have been achieved through 
contact with other branches of mathematics. Group theory is far from being isolat
ed. For instance, a discrete group in an abstract group (by an abstract group I 
mean a group with no other structure on it, no topology) may very well be embedded 
in a particular way in a semi-simple Lie group, for instance. This is very important 
for then it acts on an object which has a very rich structure, such as the homogeneous 
spaces of the group, particularly symmetric spaces when we deal with semi-simple 
Lie groups. This idea has very recently been cleverly exploited by Borel and Serre, 
using compactification of the symmetric spaces. 

There are groups which do not admit such as embedding but there are sub
stitutes for embedding, namely the so-called Tits-Bruhat buildings. These are rather 
complicated simplicial complexes - combinatorial objects which were extracted 
by Tits from the theory of Chevalley, about which I am going to say a few words, 
then developed by Bruhat and Tits himself in the theory of algebraic group on local 
field. But now they seem to pop up almost everywhere ....:... in the theory of invariants 
of Mumford, in the K-theory of Quillen and in the analogy of symmetric spaces 
which extends to all sorts of things such as harmonic forms, special functions, 
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potential and so on. Although they are purely combinatorial, Serre has recently 
discovered that if you have a group acting on such a building you can deduce a lot 
of properties of the group itself. This is a very remarkable happening. 

Another remarkable relationship emerged in 1965 when Chevalley discovered 
a general method by which to every complex Lie algebra and every field you can 
associate an abstract group which is finite and which is simple in the sense of abstract 
group theory. This remarkable thing explains coincidences, which have been observ
ed since Jordan and Dickson, of the classical groups of Lie theory and the classical 
finite simple groups. And furthermore, it gave rise to an active revival of group 
theory, especially finite simple groups which have been more or less dorm;mt since 
early 1900. First of all, you will observe that a slight variation in the method of 
Cheval ley gives rise to new theories of finite simple groups. At the same time, by a 
remarkable tool which takes 270 pages long, Feit and Thompson succeeded in pro
ving by contradiction an old conjecture of Burnside that all non-commutative sim
ple groups have even order. In other words, a group of odd order is always soluble. 
This is an old conjecture and it is proved in the following way. Suppose the theorem 
is false. Then there is a group of smallest possible order which is odd and simple. 
Alright, study that group. This takes 270 pages. All possible tools of group theory 
are used and the final result is that such a group does not exist. This is a contradic
tion. So the theorem is proved. Thompson went a little further. He was able to 
determine all minimal simple groups, that is those which do not have non-trivial 
proper subgroups which are simple. 

This was around 1963 and at that time, people began to be quite optimistic 
and thought that all simple groups have been discovered, either by Chevalley or else 
they are the Lie-type groups, the Chevalley groups and their refinements. Of course, 
one has to add a few groups which do not fit into that scheme. First of all, the 
alternating groups A which are known to be simple for n ~ 5, and then also five 
other curious groups"which have been discovered by Mathieu in the 1860s. But that 
kind of optimism did not last very long. Already in 1966 a young Yugoslav mathe
matician named Janko discovered a new simple group which has nothing to do with 
the others, of order 175, 506. And in the next few years, all hell broke loose. We 
now have something like, in addition to the Mathieu groups, 20 or even more (the 
number changes every year) new simple groups. The Mathieu groups and these 
new groups are called sporadic groups because they cannot be classified, and the 
largest has order greater than 1024 • And there is one, probably of the order of 
1050 or more, which is still in doubt, called the "monster". There is also the "little 
monster" which, I think, has been found. 

The problem is that these groups are described by various means, and the chief 
problem is that they must have some properties. Some bright mathematician thinks 
of a situation, usually combinatorial, in which some groups have such and such 
properties, and then tries to deduce from these properties a number of things about 
the groups if they exist. For instance, very often he is able to find the table of 
characters. It is a big problem sometimes: imagine what the table of characters of 
a group of roder 1024 must be. So it is only done by computers. The only possibi
lity for these bigger groups is to use computers to compute the table of characters 
and other things. And then after all sorts of such things, there may be a possibility 
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of proving that the group actually exists; give a definition of the group and prove 
that it has all the required properties. For the monster these have not been done. 
For the others, I think, they have already been done. 

So we are in a very peculiar situation. Until recently nobody understood this 
situation at all. We are in the same predicament as the physicists with their hundreds 
of elementary particles which they do not know what to do with. We do not know 
anymore what to do with the sporadic groups. Now the latest news are more opti
mistic. A new batch of very talented young mathematicians, Americans mostly, 
have been coming to this field and they have brought in new ideas. There is now 
some hope that after 20 years, and probably after 20 papers of 300 pages each, we 
will finally reach the list of finite simple groups. This may be over-optimistic but the 
experts are quite sanguine about it nowadays. 

I would like to end with a general remark. This kind of excerpt which I have 
given, gives you an idea of the tremendous scope of mathematics in our time. I claim 
that there have been more talented mathematicians, more new methods and ideas 
and more important problems solved in mathematics since the year 1940 than there 
have ever been from Greek times to 1940. And I think the records prove it con
clusively. 

Almost every year we have, somewhere in the world, a young mathematical 
genius, usually below 25, who will discover a new bright idea and push part of 
mathematics to unprecedented progress. So I think we have no reason at all to be 
doubtful about the progress of mathmatics as long as our present civilisation is able 
to survive. 
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